As part of a U.S. Department of Energy initiative to slash carbon dioxide emissions from vehicles, one West Virginia University engineer will target heavy-duty diesel engines.


Hailin Li, professor of mechanical and aerospace engineering, will spearhead the development of a software platform that conducts a fast-integrated simulation of heavy-duty diesel engines, equipped with an advanced after-treatment system. The goal is to speed up new engine technology development to improve engine efficiency and reduce exhaust emissions, Li said.

In turn, this will help cut greenhouse gases and pollutants from the heavy-duty transportation sector, he added.

Joining him on the project are his WVU mechanical and aerospace engineering colleagues Arvind Thiruvengadam, Cosmin Dumitrescu and Xueyan Song, two DOE laboratories and three industry partners.

The project is funded by a $2.5 million award from the DOE in its attempt to decarbonize the transportation sector and enhance the infrastructure needed to support the Biden Administration’s goal of a net-zero emissions economy by 2050. Li’s is one of 24 DOE-funded projects under this national effort. According to the DOE, medium- and heavy-duty trucks account for nearly 25% of transportation sector emissions.

The research team will develop the technologies that enable the fast simulation of heavy-duty diesel trucks under actual operation, with minimum computation resources which will eliminate the gap between results measured in laboratory and observed in actual on-road operation.

Read more 

Noticias Relacionadas

What’s Missing From Forest Mortality Projections? A Look Underground

Read News

Monitoring Greenhouse Gases to Save Farmers Money

Read News

Auroras Announce the Solar Cycle

Read News

A Record-Breaking Year for Fire in Sakha

Read News