Princeton researchers have taken a step toward developing a type of antenna array that could coat an airplane’s wings, function as a skin patch transmitting signals to medical implants, or cover a room as wallpaper that communicates with internet of things (IoT) devices.

verma-phased-array-for-web-16X9.jpg

The technology, which could enable many uses of emerging 5G and 6G wireless networks, is based on large-area electronics, a way of fabricating electronic circuits on thin, flexible materials. The researchers described its development in a paper published Oct. 7 in Nature Electronics.

The approach overcomes limitations of conventional silicon semiconductors, which can operate at the high radio frequencies needed for 5G applications, but can only be made up to a few centimeters wide, and are difficult to assemble into the large arrays required for enhanced communication with low-power devices.

“To achieve these large dimensions, people have tried discrete integration of hundreds of little microchips. But that’s not practical — it’s not low-cost, it’s not reliable, it’s not scalable on a wireless systems level,” said senior study author Naveen Verma, a professor of electrical and computer engineering and director of Princeton’s Keller Center for Innovation in Engineering Education.

“What you want is a technology that can natively scale to these big dimensions. Well, we have a technology like that — it’s the one that we use for our displays” such as computer monitors and liquid-crystal display (LCD) televisions, said Verma. These use thin-film transistor technology, which Verma and colleagues adapted for use in wireless signaling.

The researchers used zinc-oxide thin-film transistors to create a 1-foot-long (30-centimeter) row of three antennas, in a setup known as a phased array. Phased antenna arrays can transmit narrow-beam signals that can be digitally programmed to achieve desired frequencies and directions. Each antenna in the array emits a signal with a specified time delay from its neighbors, and the constructive and destructive interference between these signals add up to a focused electromagnetic beam — akin to the interference between ripples created by water droplets in a pond.

A single antenna broadcasts a fixed signal in all directions, “but a phased array can electrically scan the beam to different directions, so you can do point-to-point wireless communication,” said lead study author Can Wu, a postdoctoral researcher at Stanford University who completed a Ph.D. in electrical and computer engineering at Princeton earlier this year.

Read more

Noticias Relacionadas

New Tests Track Sources of Lead Contamination in Urban Soils and Assess Its Risks

Read News

Montana Lake Study Reveals How Invasive Species Affect Native Food Webs

Read News

Underground Tests Dig Into How Heat Affects Salt-Bed Repository Behavior

Read News

Global Carbon Emissions Rebound Close to Pre-COVID Levels

Read News