Australia, the driest inhabited continent, is prone to natural disasters and wild swings in weather conditions – from floods to droughts, heatwaves and bushfires.

bouabdellah-bou-4BOBpoDkGGY-unsplash

Now two new Flinders University studies of long-term hydro-climatic patterns provide fresh insights into the causes of the island continent’s strong climate variability which affects extreme wet or dry weather and other conditions vital to water supply, agriculture, the environment and the nation’s future.

For the first time, researchers from the National Centre for Groundwater Research and Training (NCGRT) at Flinders have revealed a vegetation-mediated seesaw wetting-drying phenomenon between eastern and western Australia.

The seesaw phenomenon covered in a new paper in Earth’s Future is characterised by eastern Australia gaining water, while western Australia is losing water, and vice-versa being reset by strong La Niña induced continent-wide wetting.

“The seesaw phase seems to depend on vegetation cover anomaly prior to the strong La Niña event, and can be explained by subsequent vegetation and soil moisture interactions,” says lead researcher Dr Huade Guan, Associate Professor in Hydrology.

“This finding provides society with valuable reference for managing forest, water, and disaster risks in the wake of a next strong La Niña induced continent-wide wetting in Australia,” says co-author Flinders University Professor Okke Batalaan.

Read more

Noticias Relacionadas

Russia-Ukraine Crisis: ICC to launch probe into possible war crimes

Read News

Gen Z: How climate change is re-shaping the way the work

Read News

Severe Heatwaves Putting Lakes in Hot Water

Read News

Farms Following Soil-friendly Practices Grow Healthier Food, Study Suggests

Read News