A new study shows how an increase in nighttime lighting (light pollution) and heat from urban areas disturbs the hibernation periods of insects.

griffin-wooldridge-Zfm59RZE7fI-unsplash

A new study shows how an increase in nighttime lighting (light pollution) and heat from urban areas disturbs the hibernation periods of insects.

“The study looks at a species of flesh fly called Sarcophaga similis, but the results could be applicable to any animal species that relies on predictable environmental signals for biological processes like growth, reproductive behavior, sleep, and migration”, said Assistant Professor Ayumu Mukai of Setsunan University and lead author of the study. In collaboration with Professor Shin Goto of Osaka City University, their findings were published in Royal Society Open Science.

A common way of exploring the ecological effects of urbanization is to investigate changes in life cycles of species in the urban and surrounding area. Urban warming and artificial light at night are two of the most influential factors in this regard. As urban warming can increase surface temperatures anywhere between 5 - 9°C, species with lower critical thermal optima, i.e. biological processes such as growth and development that occur at lower environmental temperatures, are disproportionately affected. Due to large fluctuations throughout the day and year, temperature can be an unreliable cue for species to determine when to sleep, breed, migrate, etc., rendering this cue supplemental to a biological response to seasonal changes by monitoring day length – an ability called photoperiodism. Increased nighttime light can throw off an insect’s photoperiodism, yet few studies have focused on the effect urban warming and artificial light at night have had on insects in their natural habitat.

“Recognizing the conditions urbanization brings upon insects where they actually live would be a great step forward in mitigating any negative effects”, Shin Goto said. To understand this, the team conducted experiments indoors and outdoors. As S. similis typically enters hibernation during autumn, laboratory hibernation was induced in flies under two average October temperatures (20°C and 15°C), with varying levels of illuminance to mimic bright urban to dark rural areas. They found that the percentage of flies entering hibernation decreased as illumination increased and as the temperature increased from 15°C to 20°C – suggesting the higher temperatures found in urban areas are associated with higher nighttime illumination.

Read more

Noticias Relacionadas

What’s Missing From Forest Mortality Projections? A Look Underground

Read News

Monitoring Greenhouse Gases to Save Farmers Money

Read News

Auroras Announce the Solar Cycle

Read News

A Record-Breaking Year for Fire in Sakha

Read News