Environment

Combination of Organic Farming and Genetic Engineering

For more sustainability on a global level, EU legislation should be changed to allow the use of gene editing in organic farming. This is what an international research team involving the Universities of Bayreuth and Göttingen demands in a paper published in the journal "Trends in Plant Science".

tim-hufner-6-kTk6B8mq8-unsplash

In May 2020, the EU Commission presented its "Farm-to-Fork" strategy, which is part of the "European Green Deal". The aim is to make European agriculture and its food system more sustainable. In particular, the proportion of organic farming in the EU’s total agricultural land is to be increased to 25 percent by 2030. However, if current EU legislation remains in place, this increase will by no means guarantee more sustainability, as the current study by scientists from Bayreuth, Göttingen, Düsseldorf, Heidelberg, Wageningen, Alnarp, and Berkeley shows.

Numerous applications derived from new biotechnological processes are severely restricted or even banned by current EU law. This is especially true for gene editing, a new precision tool used in plant breeding. "Expanding organic farming further under the current legal restrictions on biotechnology could easily lead to less sustainability instead of more. Yet gene editing in particular offers great potential for sustainable agriculture," says Kai Purnhagen, lead author of the study and Professor of German & European Food Law at the University of Bayreuth.

Organic farming focuses on greater farming diversity and prohibits the use of chemical fertilisers and pesticides. Therefore, it can have a beneficial effect on environmental protection and biodiversity at the local level. However, compared to conventional farming, organic farming also delivers lower yields. Consequently, more land is needed to produce the same amount of high-quality food. "As global demand for high-quality food increases, more organic farming in the EU would lead to an expansion of agricultural land elsewhere in the world. This could easily result in environmental costs that exceed any local environmental benefits in the EU, as the conversion of natural land into agricultural land is one of the biggest drivers of global climate change and biodiversity loss," says co-author Matin Qaim, Professor of Agricultural Economics at the University of Göttingen.

Read more